Wednesday, December 25, 2019

Full details about Bisection method with example - tutormathematic


The bisection method is one of the methods used to find out the solution of the linear equation.
So, without wasting any moment lets begin by discussing one simple example.

    Note - Bisection formula :  x= a+b/2


 Q 1. Find the real root of equation x^3 -x-4 = 0 using bisection method correct up to 3 decimal places ?


Sol - Step 1 - suppose let f(x) = x^3 - x -4 =0 -------------- eq(1)

      Step 2 - Find one negative value and one positive value by hit and trial method.
Put integer values in equation 1 to get one negative and positive value.
   
    put f(1) = -4 <0
          f(2) = 2 >0
      
Note - Put decimal values like 1.3, 1.4 to get positive and negative values

 Put f(1.7)= -0.767 <0
       f(1.8) = 0.032 >0

Step 3 - Choosing a= 1.7 and b =1.8

Step 4 - Now find approximate values using bisection formula

     .  1st approximate value
                                             X1 = a+b/2 = (1.7 + 1.8)/2 = 1.75

 f(X1) = (1.75)^3 - 1.75 -4 =  -0.39 <0

Hence root lies between 1.75 and 1.8


    .  2nd approximate value -
                                            X2 = a+b/2 = (1.75+1.8)/2 = 1.775

 f(X2) = (1.775)^3 - 1.775 - 4 = -0.182 <0

As 1 st approximate value and 2nd approximate values not match 

Hence root lies between 1.775 and 1.8

    . 3rd approximate value - 
                                         X3 = a+b/2 = (1.775+1.8)/2 = 1.7875

  f(X3) = (1.7875)^3 - 1.7875 - 4 = -0.076 <0

As 2nd and 3rd approximate values not match

Hence root lies between 1.7875 and 1.8

   . 4th approximate value - 
                                       X4 = a+b/2 = (1.7875+1.8)/2 = 1.79375

f(X4) = (1.79375)^3 - 1.79375 - 4 = -0.022 <0

As 3rd and 4th approximate values not match

Hence root lies between 1.79375 and 1.8

   
                            |  
                            |
                            |


This procedure will continue up to 7th approximate value 

 . 7th approximate value - 
                                      X7 = a+b/2 = (1.795312 + 1.796875)/2 = 1.796093

As X6 and X7 values are same hence 

The approximate roots correct up to 3 decimal places is

          ANSWER = X= 1.796


                          Hope you all liked the content 
                              Thank you for coming